The Evaluation of Integrals of Bessel Functions via G-function Identities
نویسندگان
چکیده
A few transformations are presented for reducing certain cases of Meijer’s Gfunction to a G-function of lower order. Their applications to the integration of a product of Bessel functions are given. The algorithm has been implemented within Mathematica 3.0.
منابع مشابه
Bessel integrals in epsilon expansion: Squared spherical Bessel functions averaged with Gaussian power-law distributions
Keywords: Squared spherical Bessel functions Regularization of Hankel series Gaussian power-law densities Kummer distributions Airy approximation of Bessel integrals a b s t r a c t Bessel integrals of type R 1 0 k lþ2 e Àak 2 ÀðbþixÞk j 2 l ðpkÞdk are studied, where the squared spherical Bessel function j 2 l is averaged with a modulated Gaussian power-law density. These inte-grals define the ...
متن کاملThe Krätzel function and evaluation of integrals
Evaluation of integrals Meijer G-function Bessel functions Cosine and sine functions a b s t r a c t This paper is devoted to the study of the special function Z ν ρ (z) of z ∈ C with two parameters ρ ∈ R and ν ∈ C. In a special case such a function coincides with the McDonald function. Using the representations of Z ν ρ (z) in terms of the H-function, being different for ρ > 0 and ρ < 0, we de...
متن کاملResearch Article On a Class of Integrals Involving a Bessel Function Times Gegenbauer Polynomials
We provide information and explicit formulae for a class of integrals involving Bessel functions and Gegenbauer polynomials. We present a simple proof of an old formula of Gegenbauer. Some interesting special cases and applications of this result are obtained. In particular, we give a short proof of a recent result of A. A. R. Neves et al. regarding the analytical evaluation of an integral of a...
متن کاملThe plane wave expansion, infinite integrals and identities involving spherical Bessel functions
This paper shows that the plane wave expansion can be a useful tool in obtaining analytical solutions to infinite integrals over spherical Bessel functions and the derivation of identites for these functions. The integrals are often used in nuclear scattering calculations, where an analytical result can provide an insight into the reaction mechanism. A technique is developed whereby an integral...
متن کاملOn a Class of Integrals Involving a Bessel Function Times Gegenbauer Polynomials
We provide information and explicit formulae for a class of integrals involving Bessel functions and Gegenbauer polynomials. We present a simple proof of an old formula of Gegenbauer. Some interesting special cases and applications of this result are obtained. In particular, we give a short proof of a recent result of A. A. R. Neves et al. regarding the analytical evaluation of an integral of a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998